Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Neurobiol Aging ; 137: 62-77, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431999

RESUMO

Resting-state eyes-closed electroencephalographic (rsEEG) alpha rhythms are dominant in posterior cortical areas in healthy adults and are abnormal in subjective memory complaint (SMC) persons with Alzheimer's disease amyloidosis. This exploratory study in 161 SMC participants tested the relationships between those rhythms and seed-based resting-state functional magnetic resonance imaging (rs-fMRI) connectivity between thalamus and visual cortical networks as a function of brain amyloid burden, revealed by positron emission tomography and cognitive reserve, measured by educational attainment. The SMC participants were divided into 4 groups according to 2 factors: Education (Edu+ and Edu-) and Amyloid burden (Amy+ and Amy-). There was a statistical interaction (p < 0.05) between the two factors, and the subgroup analysis using estimated marginal means showed a positive association between the mentioned rs-fMRI connectivity and the posterior rsEEG alpha rhythms in the SMC participants with low brain amyloidosis and high CR (Amy-/Edu+). These results suggest that in SMC persons, early Alzheimer's disease amyloidosis may contrast the beneficial effects of cognitive reserve on neurophysiological oscillatory mechanisms at alpha frequencies and connectivity between the thalamus and visual cortical networks.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Humanos , Idoso , Ritmo alfa , Doença de Alzheimer/psicologia , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética , Amiloide
2.
Front Immunol ; 15: 1358219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529285

RESUMO

African swine fever virus represents a significant reemerging threat to livestock populations, as its incidence and geographic distribution have surged over the past decade in Europe, Asia, and Caribbean, resulting in substantial socio-economic burdens and adverse effects on animal health and welfare. In a previous report, we described the protective properties of our newly thermo-attenuated strain (ASFV-989) in pigs against an experimental infection of its parental Georgia 2007/1 virulent strain. In this new study, our objective was to characterize the molecular mechanisms underlying the attenuation of ASFV-989. We first compared the activation of type I interferon pathway in response to ASFV-989 and Georgia 2007/1 infections, employing both in vivo and in vitro models. Expression of IFN-α was significantly increased in porcine alveolar macrophages infected with ASFV-989 while pigs infected with Georgia 2007/1 showed higher IFN-α than those infected by ASFV-989. We also used a medium-throughput transcriptomic approach to study the expression of viral genes by both strains, and identified several patterns of gene expression. Subsequently, we investigated whether proteins encoded by the eight genes deleted in ASFV-989 contribute to the modulation of the type I interferon signaling pathway. Using different strategies, we showed that MGF505-4R interfered with the induction of IFN-α/ß pathway, likely through interaction with TRAF3. Altogether, our data reveal key differences between ASFV-989 and Georgia 2007/1 in their ability to control IFN-α/ß signaling and provide molecular mechanisms underlying the role of MGF505-4R as a virulence factor.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Suínos , Animais , Virulência , Macrófagos
3.
Eur J Med Chem ; 265: 116098, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38171148

RESUMO

Overexpression of the chromosome 21 DYRK1A gene induces morphological defects and cognitive impairments in individuals with Down syndrome (DS) and in DS mice models. Aging neurons of specific brain regions of patients with Alzheimer's disease, DS and Pick's disease have increased DYRK1A immunoreactivity suggesting a possible association of DYRK1A with neurofibrillary tangle pathology. Epigallocatechin-3-gallate (EGCG) displays appreciable inhibition of DYRK1A activity and, contrary to all other published inhibitors, EGCG is a non-competitive inhibitor of DYRK1A. Prenatal exposure to green tea polyphenols containing EGCG protects from brain defects induced by overexpression of DYRK1A. In order to produce more robust and possibly more active analogues of the natural compound EGCG, here we synthetized new EGCG-like molecules with several structural modifications to the EGCG skeleton. We replaced the ester boun of EGCG with a more resistant amide bond. We also replaced the oxygen ring by a methylene group. And finally, we positioned a nitrogen atom within this ring. The selected compound was shown to maintain the non-competitive property of EGCG and to correct biochemical and behavioral defects present in a DS mouse model. In addition it showed high stability and specificity.


Assuntos
Catequina/análogos & derivados , Síndrome de Down , Humanos , Feminino , Gravidez , Camundongos , Animais , Síndrome de Down/tratamento farmacológico , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Camundongos Transgênicos , Cognição
4.
J Cell Mol Med ; 27(15): 2228-2238, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37415307

RESUMO

Down syndrome is the most common chromosomal abnormality in humans. Patients with Down syndrome have hematologic disorders, including mild to moderate thrombocytopenia. In case of Down syndrome, thrombocytopenia is not associated with bleeding, and it remains poorly characterized regarding molecular mechanisms. We investigated the effects of overexpression of Dyrk1A, an important factor contributing to some major Down syndrome phenotypes, on platelet number and bleeding in mice. Mice overexpressing Dyrk1A have a decrease in platelet number by 20%. However, bleeding time was found to be reduced by 50%. The thrombocytopenia and the decreased bleeding time observed were not associated to an abnormal platelet receptors expression, to a defect of platelet activation by ADP, thrombin or convulxin, to the presence of activated platelets in the circulation or to an abnormal half-life of the platelets. To propose molecular mechanisms explaining this discrepancy, we performed a network analysis of Dyrk1A interactome and demonstrated that Dyrk1A, fibronectin and fibrinogen interact indirectly through two distinct clusters of proteins. Moreover, in mice overexpressing Dyrk1A, increased plasma fibronectin and fibrinogen levels were found, linked to an increase of the hepatic fibrinogen production. Our results indicate that overexpression of Dyrk1A in mice induces decreased bleeding consistent with increased plasma fibronectin and fibrinogen levels, revealing a new role of Dyrk1A depending on its indirect interaction with these two proteins.


Assuntos
Síndrome de Down , Trombocitopenia , Animais , Humanos , Camundongos , Plaquetas/metabolismo , Síndrome de Down/metabolismo , Fibrinogênio/metabolismo , Fibronectinas/metabolismo , Hemorragia/metabolismo , Trombocitopenia/metabolismo , Quinases Dyrk
5.
Free Neuropathol ; 42023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37283933

RESUMO

In a neuropathological series of 20 COVID-19 cases, we analyzed six cases (three biopsies and three autopsies) with multiple foci predominantly affecting the white matter as shown by MRI. The cases presented with microhemorrhages evocative of small artery diseases. This COVID-19 associated cerebral microangiopathy (CCM) was characterized by perivascular changes: arterioles were surrounded by vacuolized tissue, clustered macrophages, large axonal swellings and a crown arrangement of aquaporin-4 immunoreactivity. There was evidence of blood-brain-barrier leakage. Fibrinoid necrosis, vascular occlusion, perivascular cuffing and demyelination were absent. While no viral particle or viral RNA was found in the brain, the SARS-CoV-2 spike protein was detected in the Golgi apparatus of brain endothelial cells where it closely associated with furin, a host protease known to play a key role in virus replication. Endothelial cells in culture were not permissive to SARS-CoV-2 replication. The distribution of the spike protein in brain endothelial cells differed from that observed in pneumocytes. In the latter, the diffuse cytoplasmic labeling suggested a complete replication cycle with viral release, notably through the lysosomal pathway. In contrast, in cerebral endothelial cells the excretion cycle was blocked in the Golgi apparatus. Interruption of the excretion cycle could explain the difficulty of SARS-CoV-2 to infect endothelial cells in vitro and to produce viral RNA in the brain. Specific metabolism of the virus in brain endothelial cells could weaken the cell walls and eventually lead to the characteristic lesions of COVID-19 associated cerebral microangiopathy. Furin as a modulator of vascular permeability could provide some clues for the control of late effects of microangiopathy.

6.
Mol Syndromol ; 14(2): 89-100, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37064334

RESUMO

Research focused on Down syndrome continued to gain momentum in the last several years and is advancing our understanding of how trisomy 21 (T21) modifies molecular and cellular processes. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. During the COVID pandemic, T21RS held its first virtual conference program, sponsored by the University of California at Irvine, on June 8-10, 2021 and brought together 342 scientists, families, and industry representatives from over 25 countries to share the latest discoveries on underlying cellular and molecular mechanisms of T21, cognitive and behavioral changes, and comorbidities associated with Down syndrome, including Alzheimer's disease and Regression Disorder. Presentations of 91 cutting-edge abstracts reflecting neuroscience, neurology, model systems, psychology, biomarkers, and molecular and pharmacological therapeutic approaches demonstrate the compelling interest and continuing advancement toward innovating biomarkers and therapies aimed at ameliorating health conditions associated with T21.

7.
Transl Psychiatry ; 13(1): 111, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37015911

RESUMO

Early markers are needed for more effective prevention of Alzheimer's disease. We previously showed that individuals with Alzheimer's disease have decreased plasma DYRK1A levels compared to controls. We assessed DYRK1A in the plasma of cognitively healthy elderly volunteers, individuals with either Alzheimer's disease (AD), tauopathies or Down syndrome (DS), and in lymphoblastoids from individuals with DS. DYRK1A levels were inversely correlated with brain amyloid ß burden in asymptomatic elderly individuals and AD patients. Low DYRK1A levels were also detected in patients with tauopathies. Individuals with DS had higher DYRK1A levels than controls, although levels were lower in individuals with DS and with dementia. These data suggest that plasma DYRK1A levels could be used for early detection of at risk individuals of AD and for early detection of AD. We hypothesize that lack of increase of DYRK1A at middle age (40-50 years) could be a warning before the cognitive decline, reflecting increased risk for AD.


Assuntos
Doença de Alzheimer , Síndrome de Down , Doenças Neurodegenerativas , Tauopatias , Pessoa de Meia-Idade , Humanos , Idoso , Adulto , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Envelhecimento
8.
Transl Psychiatry ; 13(1): 54, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788216

RESUMO

Morphological alterations of the endosomal compartment have been widely described in post-mortem brains from Alzheimer's disease (AD) patients and subjects with Down syndrome (DS) who are at high risk for AD. Immunostaining with antibodies against endosomal markers such as Early Endosome Antigen 1 (EEA1) revealed increased size of EEA1-positive puncta. In DS, peripheral cells such as peripheral blood mononuclear cells (PBMCs) and fibroblasts, share similar phenotype even in the absence of AD. We previously found that PBMCs from AD patients have larger EEA1-positive puncta, correlating with brain amyloid load. Here we analysed the endosomal compartment of fibroblasts from a very well characterised cohort of AD patients (IMABio3) who underwent thorough clinical, imaging and biomarkers assessments. Twenty-one subjects were included (7 AD with mild cognitive impairment (AD-MCI), 7 AD with dementia (AD-D) and 7 controls) who had amyloid-PET at baseline (PiB) and neuropsychological tests at baseline and close to skin biopsy. Fibroblasts isolated from skin biopsies were immunostained with anti-EEA1 antibody and imaged using a spinning disk microscope. Endosomal compartment ultrastructure was also analysed by electron microscopy. All fibroblast lines were genotyped and their AD risk factors identified. Our results show a trend to an increased EEA1-positive puncta volume in fibroblasts from AD-D as compared to controls (p.adj = 0.12) and reveal enhanced endosome area in fibroblasts from AD-MCI and AD-AD versus controls. Larger puncta size correlated with PiB retention in different brain areas and with worse cognitive scores at the time of biopsy as well as faster decline from baseline to the time of biopsy. Finally, we identified three genetic risk factors for AD (ABCA1, COX7C and MYO15A) that were associated with larger EEA1 puncta volume. In conclusion, the endosomal compartment in fibroblasts could be used as cellular peripheral biomarker for both amyloid deposition and cognitive decline in AD patients.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Amiloide , Peptídeos beta-Amiloides , Endossomos/patologia , Fibroblastos , Leucócitos Mononucleares , Tomografia por Emissão de Pósitrons
9.
Eur Neuropsychopharmacol ; 69: 26-46, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36706689

RESUMO

To study mental illness and health, in the past researchers have often broken down their complexity into individual subsystems (e.g., genomics, transcriptomics, proteomics, clinical data) and explored the components independently. Technological advancements and decreasing costs of high throughput sequencing has led to an unprecedented increase in data generation. Furthermore, over the years it has become increasingly clear that these subsystems do not act in isolation but instead interact with each other to drive mental illness and health. Consequently, individual subsystems are now analysed jointly to promote a holistic understanding of the underlying biological complexity of health and disease. Complementing the increasing data availability, current research is geared towards developing novel methods that can efficiently combine the information rich multi-omics data to discover biologically meaningful biomarkers for diagnosis, treatment, and prognosis. However, clinical translation of the research is still challenging. In this review, we summarise conventional and state-of-the-art statistical and machine learning approaches for discovery of biomarker, diagnosis, as well as outcome and treatment response prediction through integrating multi-omics and clinical data. In addition, we describe the role of biological model systems and in silico multi-omics model designs in clinical translation of psychiatric research from bench to bedside. Finally, we discuss the current challenges and explore the application of multi-omics integration in future psychiatric research. The review provides a structured overview and latest updates in the field of multi-omics in psychiatry.


Assuntos
Transtornos Mentais , Multiômica , Humanos , Genômica , Proteômica/métodos , Aprendizado de Máquina , Transtornos Mentais/diagnóstico , Transtornos Mentais/genética , Transtornos Mentais/terapia
10.
J Neurosci ; 43(1): 14-27, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36384682

RESUMO

In the neocortex, fast synaptic inhibition orchestrates both spontaneous and sensory-evoked activity. GABAergic interneurons (INs) inhibit pyramidal neurons (PNs) directly, modulating their output activity and thus contributing to balance cortical networks. Moreover, several IN subtypes also inhibit other INs, forming specific disinhibitory circuits, which play crucial roles in several cognitive functions. Here, we studied a subpopulation of somatostatin-positive INs, the Martinotti cells (MCs) in layer 2/3 of the mouse barrel cortex (both sexes). MCs inhibit the distal portion of PN apical dendrites, thus controlling dendrite electrogenesis and synaptic integration. Yet, it is poorly understood whether MCs inhibit other elements of the cortical circuits, and the connectivity properties with non-PN targets are unknown. We found that MCs have a strong preference for PN dendrites, but they also considerably connect with parvalbumin-positive, vasoactive intestinal peptide-expressing, and layer 1 (L1) INs. Remarkably, GABAergic synapses from MCs exhibited clear cell type-specific short-term plasticity. Moreover, whereas the biophysical properties of MC-PN synapses were consistent with distal dendritic inhibition, MC-IN synapses exhibited characteristics of fast perisomatic inhibition. Finally, MC-PN connections used α5-containing GABAA receptors (GABAARs), but this subunit was not expressed by the other INs targeted by MCs. We reveal a specialized connectivity blueprint of MCs within different elements of superficial cortical layers. In addition, our results identify α5-GABAARs as the molecular fingerprint of MC-PN dendritic inhibition. This is of critical importance, given the role of α5-GABAARs in cognitive performance and their involvement in several brain diseases.SIGNIFICANCE STATEMENT Martinotti cells (MCs) are a prominent, broad subclass of somatostatin-expressing GABAergic interneurons, specialized in controlling distal dendrites of pyramidal neurons (PNs) and taking part in several cognitive functions. Here we characterize the connectivity pattern of MCs with other interneurons in the superficial layers (L1 and L2/3) of the mouse barrel cortex. We found that the connectivity pattern of MCs with PNs as well as parvalbumin, vasoactive intestinal peptide, and L1 interneurons exhibit target-specific plasticity and biophysical properties. The specificity of α5-GABAARs at MC-PN synapses and the lack or functional expression of this subunit by other cell types define the molecular identity of MC-PN connections and the exclusive involvement of this inhibitory circuits in α5-dependent cognitive tasks.


Assuntos
Parvalbuminas , Peptídeo Intestinal Vasoativo , Feminino , Masculino , Animais , Peptídeo Intestinal Vasoativo/metabolismo , Parvalbuminas/metabolismo , Neurônios , Células Piramidais/fisiologia , Interneurônios/fisiologia , Somatostatina/metabolismo , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo
11.
Front Psychiatry ; 14: 1279688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38348362

RESUMO

Major depressive disorder (MDD) is the most common psychiatric disease worldwide with a huge socio-economic impact. Pharmacotherapy represents the most common option among the first-line treatment choice; however, only about one third of patients respond to the first trial and about 30% are classified as treatment-resistant depression (TRD). TRD is associated with specific clinical features and genetic/gene expression signatures. To date, single sets of markers have shown limited power in response prediction. Here we describe the methodology of the PROMPT project that aims at the development of a precision medicine algorithm that would help early detection of non-responder patients, who might be more prone to later develop TRD. To address this, the project will be organized in 2 phases. Phase 1 will involve 300 patients with MDD already recruited, comprising 150 TRD and 150 responders, considered as extremes phenotypes of response. A deep clinical stratification will be performed for all patients; moreover, a genomic, transcriptomic and miRNomic profiling will be conducted. The data generated will be exploited to develop an innovative algorithm integrating clinical, omics and sex-related data, in order to predict treatment response and TRD development. In phase 2, a new naturalistic cohort of 300 MDD patients will be recruited to assess, under real-world conditions, the capability of the algorithm to correctly predict the treatment outcomes. Moreover, in this phase we will investigate shared decision making (SDM) in the context of pharmacogenetic testing and evaluate various needs and perspectives of different stakeholders toward the use of predictive tools for MDD treatment to foster active participation and patients' empowerment. This project represents a proof-of-concept study. The obtained results will provide information about the feasibility and usefulness of the proposed approach, with the perspective of designing future clinical trials in which algorithms could be tested as a predictive tool to drive decision making by clinicians, enabling a better prevention and management of MDD resistance.

12.
Viruses ; 14(12)2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560781

RESUMO

African swine fever (ASF) is a contagious viral disease of suids that induces high mortality in domestic pigs and wild boars. Given the current spread of ASF, the development of a vaccine is a priority. During an attempt to inactivate the Georgia 2007/1 strain via heat treatment, we fortuitously generated an attenuated strain called ASFV-989. Compared to Georgia, the ASFV-989 strain genome has a deletion of 7458 nucleotides located in the 5'-end encoding region of MGF 505/360, which allowed for developing a DIVA PCR system. In vitro, in porcine alveolar macrophages, the replication kinetics of the ASFV-989 and Georgia strains were identical. In vivo, specific-pathogen-free (SPF) pigs inoculated with the ASFV-989 strain, either intramuscularly or oronasally, exhibited transient hyperthermia and slightly decreased growth performance. Animals immunized with the ASFV-989 strain showed viremia 100 to 1000 times lower than those inoculated with the Georgia strain and developed a rapid antibody and cell-mediated response. In ASFV-989-immunized pigs challenged 2 or 4 weeks later with the Georgia strain, no symptoms were recorded and no viremia for the challenge strain was detected. These results show that the ASFV-989 strain is a promising non-GMO vaccine candidate that is usable either intramuscularly or oronasally.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas , Vacinas Virais , Suínos , Animais , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/fisiologia , Sus scrofa , Imunização
13.
Cells ; 11(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36429044

RESUMO

The association of the APOE4 (vs. APOE3) isoform with an increased risk of Alzheimer's disease (AD) is unequivocal, but the underlying mechanisms remain incompletely elucidated. A prevailing hypothesis incriminates the impaired ability of APOE4 to clear neurotoxic amyloid-ß peptides (Aß) from the brain as the main mechanism linking the apolipoprotein isoform to disease etiology. The APOE protein mediates lipid transport both within the brain and from the brain to the periphery, suggesting that lipids may be potential co-factors in APOE4-associated physiopathology. The present study reveals several changes in the pathways of lipid homeostasis in the brains of mice expressing the human APOE4 vs. APOE3 isoform. Carriers of APOE4 had altered cholesterol turnover, an imbalance in the ratio of specific classes of phospholipids, lower levels of phosphatidylethanolamines bearing polyunsaturated fatty acids and an overall elevation in levels of monounsaturated fatty acids. These modifications in lipid homeostasis were related to increased production of Aß peptides as well as augmented levels of tau and phosphorylated tau in primary neuronal cultures. This suite of APOE4-associated anomalies in lipid homeostasis and neurotoxic protein levels may be related to the accrued risk for AD in APOE4 carriers and provides novel insights into potential strategies for therapeutic intervention.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Animais , Camundongos , Humanos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Doença de Alzheimer/metabolismo , Apolipoproteína E3/genética , Apolipoproteínas E , Homeostase , Isoformas de Proteínas/metabolismo
14.
Virologie (Montrouge) ; 26(5): 327-341, 2022 09 01.
Artigo em Francês | MEDLINE | ID: mdl-36413119

RESUMO

Classical swine fever (CSF) is a highly contagious swine-specific disease which may have a huge economic impact for porcine production. CSF is caused by a virus belonging to the Pestivirus genus, which has expanded for the past 5 years with the discovery of new species whose genetic proximity to the CSF virus could further complicate laboratory diagnosis. The various forms of the disease, and in particular the increased frequency of attenuated forms, linked to an evolution of CSF virus strains towards a reduction in their virulence, delay clinical diagnosis. Thus, a long period may elapse before an outbreak is detected, allowing the virus to circulate longer, with the risk of spreading to distant geographical areas. Efforts must be maintained in terms of surveillance and diagnostic tools development in order to detect CSF virus infection early and thus limit the spread of the disease and facilitate control measures.


La peste porcine classique (PPC) est une maladie très contagieuse, spécifique des suidés, qui continue à constituer une menace pour la production porcine malgré un statut indemne de la plupart des pays de l'Union européenne. La PPC est causée par un virus de la famille des Flaviviridae appartenant au genre Pestivirus, en extension depuis les cinq dernières années avec la découverte de nouvelles espèces, notamment chez le porc ou autres animaux de rente dont la proximité génétique avec le virus de la PPC pourrait davantage compliquer le diagnostic de laboratoire. La diversité des formes de la maladie, et notamment la fréquence accrue des formes atténuées et inapparentes liée à une évolution des souches du virus de la PPC vers une réduction de leur virulence, retarde le diagnostic clinique. Ainsi, une longue période peut s'écouler avant la détection d'un foyer, permettant au virus de la PPC de circuler plus longuement, avec le risque de diffuser vers des zones géographiques éloignées des premiers cas d'infection. Les efforts doivent être maintenus en termes de surveillance et de développement d'outils de diagnostic afin de détecter précocement une infection par le virus de la PPC et ainsi limiter la propagation de la maladie et faciliter les mesures de contrôle.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Pestivirus , Suínos , Animais , Peste Suína Clássica/diagnóstico , Peste Suína Clássica/epidemiologia , Peste Suína Clássica/prevenção & controle , Vírus da Febre Suína Clássica/genética , Surtos de Doenças
15.
Virologie (Montrouge) ; 26(5): 387-400, 2022 09 01.
Artigo em Francês | MEDLINE | ID: mdl-36413123

RESUMO

African swine fever (ASF) is a highly pathogenic disease causing haemorrhagic fever in domestic and wild swine. It is responsible for numerous epizootics, particularly in Europe and Asia, causing major economic losses for the pig industry. African Swine Fever virus (ASFV) is the etiological agent responsible for this disease. It is a very large double-stranded DNA virus, encoding for over 150 proteins. Various studies have shown that there is a close relationship between the ability of some viral proteins to inhibit the type I interferon (IFNI) response and the attenuation and virulence processes of ASFV. This review describes the mechanisms of inhibition of the IFN-I response by ASFV proteins, which provide a molecular explanation of how ASFV escapes the innate immune response.


La peste porcine africaine (PPA) est une maladie hautement pathogène causant une fièvre hémorragique chez les suidés domestiques et sauvages. Elle est responsable de nombreuses épizooties notamment en Europe et en Asie, causant de grandes pertes économiques pour la filière porcine. Le virus de la peste porcine africaine (ASFV) est l'agent étiologique responsable de cette maladie. C'est un virus avec un génome à ADN double brin de grande taille, codant pour plus de 150 protéines. Différents travaux ont montré qu'il existe une étroite relation entre la capacité de certaines protéines virales à inhiber la réponse interféron de type I (IFN-I) et les processus d'atténuation et de virulence pour l'ASFV. Cette revue décrit les mécanismes d'inhibition de la réponse IFN-I par les protéines d'ASFV permettant d'expliquer sur le plan moléculaire l'échappement à la réponse immunitaire innée.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Suínos , Animais , Vírus da Febre Suína Africana/genética , Imunidade Inata/genética , Virulência
16.
Dis Model Mech ; 15(12)2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374158

RESUMO

Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21). The understanding of genotype-phenotype relationships, the identification of driver genes and various proofs of concept for therapeutics have benefited from mouse models. The premier model, named Ts(1716)65Dn/J (Ts65Dn), displayed phenotypes related to human DS features. It carries an additional minichromosome with the Mir155 to Zbtb21 region of mouse chromosome 16, homologous to Hsa21, encompassing around 90 genes, fused to the centromeric part of mouse chromosome 17 from Pisd-ps2/Scaf8 to Pde10a, containing 46 genes not related to Hsa21. Here, we report the investigation of a new model, Ts66Yah, generated by CRISPR/Cas9 without the genomic region unrelated to Hsa21 on the minichromosome. As expected, Ts66Yah replicated DS cognitive features. However, certain phenotypes related to increased activity, spatial learning and molecular signatures were changed, suggesting genetic interactions between the Mir155-Zbtb21 and Scaf8-Pde10a intervals. Thus, Ts66Yah mice have stronger construct and face validity than Ts65Dn mice for mimicking consequences of DS genetic overdosage. Furthermore, this study is the first to demonstrate genetic interactions between triplicated regions homologous to Hsa21 and others unrelated to Hsa21. This article has an associated First Person interview with the first author of the paper.


Assuntos
Síndrome de Down , Humanos , Camundongos , Animais , Síndrome de Down/genética , Diester Fosfórico Hidrolases
17.
Pathogens ; 11(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36297164

RESUMO

Aujeszky's disease virus (ADV), also known as pseudorabies virus, causes an important neurological infection with a major economic and health impact on animal husbandry. Here, we serologically screened muscle fluid from wild boar (Sus scrofa) for the presence of anti-ADV antibodies. Animals were caught during two hunting seasons (2019−2020 and 2021−2022) from three areas in southeastern France known to be endemic with wild boar populations. A total of 30.33% of the 399 tested animals scored positive for anti-glycoprotein B antibodies directed against ADV using a commercial competitive ELISA test. A significant effect (p-value < 0.0001) of the geographical location and animal age on ADV seroprevalence was observed. The results of this study confirmed the importance of wild boar in the epidemiology of ADV in southeastern France.

18.
J Alzheimers Dis ; 90(1): 69-84, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36057818

RESUMO

BACKGROUND: Alzheimer's disease (AD) includes progressive symptoms spread along a continuum of preclinical and clinical stages. Although numerous studies uncovered the neuro-cognitive changes of AD, very little is known on the natural history of brain lesions and modifications of brain networks in elderly cognitively-healthy memory complainers at risk of AD for carrying pathophysiological biomarkers (amyloidopathy and tauopathy). OBJECTIVE: We analyzed resting-state electroencephalography (EEG) of 318 cognitively-healthy subjective memory complainers from the INSIGHT-preAD cohort at the time of their first visit (M0) and two-years later (M24). METHODS: Using 18F-florbetapir PET-scanner, subjects were stratified between amyloid negative (A-; n = 230) and positive (A+; n = 88) groups. Differences between A+ and A- were estimated at source-level in each band-power of the EEG spectrum. RESULTS: At M0, we found an increase of theta power in the mid-frontal cortex in A+ compared to A-. No significant association was found between mid-frontal theta and the individuals' cognitive performance. At M24, theta power increased in A+ relative to A- individuals in the posterior cingulate cortex and the pre-cuneus. Alpha band revealed a peculiar decremental trend in posterior brain regions in the A+ relative to the A- group only at M24. Theta power increase over the mid-frontal and mid-posterior cortices suggests an hypoactivation of the default-mode network in the A+ individuals and a non-linear longitudinal progression at M24. CONCLUSION: We provide the first source-level longitudinal evidence on the impact of brain amyloidosis on the EEG dynamics of a large-scale, monocentric cohort of elderly individuals at-risk for AD.


Assuntos
Doença de Alzheimer , Amiloidose , Humanos , Idoso , Doença de Alzheimer/patologia , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética , Eletroencefalografia , Amiloide/metabolismo , Encéfalo/patologia , Amiloidose/patologia , Proteínas Amiloidogênicas
19.
Mol Neurobiol ; 59(11): 7056-7073, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36076005

RESUMO

Excess brain cholesterol is strongly implicated in the pathogenesis of Alzheimer's disease (AD). Here we evaluated how the presence of a cholesterol-binding site (CBS) in the transmembrane and juxtamembrane regions of the amyloid precursor protein (APP) regulates its processing. We generated nine point mutations in the APP gene, changing the charge and/or hydrophobicity of the amino-acids which were previously shown as part of the CBS. Most mutations triggered a reduction of amyloid-ß peptides Aß40 and Aß42 secretion from transiently transfected HEK293T cells. Only the mutations at position 28 of Aß in the APP sequence resulted in a concomitant significant increase in the production of shorter Aß peptides. Mass spectrometry (MS) confirmed the predominance of Aßx-33 and Aßx-34 with the APPK28A mutant. The enzymatic activity of α-, ß-, and γ-secretases remained unchanged in cells expressing all mutants. Similarly, subcellular localization of the mutants in early endosomes did not differ from the APPWT protein. A transient increase of plasma membrane cholesterol enhanced the production of Aß40 and Aß42 by APPWT, an effect absent in APPK28A mutant. Finally, WT but not CBS mutant Aß derived peptides bound to cholesterol-rich exosomes. Collectively, the present data revealed a major role of juxtamembrane amino acids of the APP CBS in modulating the production of toxic Aß species. More generally, they underpin the role of cholesterol in the pathophysiology of AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Doença de Alzheimer/metabolismo , Aminoácidos , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Sítios de Ligação , Colesterol , Células HEK293 , Humanos , Mutação/genética
20.
J Exp Med ; 219(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776089

RESUMO

Meningeal lymphatic vessels (MLVs) were identified in the dorsal and caudobasal regions of the dura mater, where they ensure waste product elimination and immune surveillance of brain tissues. Whether MLVs exist in the anterior part of the murine and human skull and how they connect with the glymphatic system and extracranial lymphatics remained unclear. Here, we used light-sheet fluorescence microscopy (LSFM) imaging of mouse whole-head preparations after OVA-A555 tracer injection into the cerebrospinal fluid (CSF) and performed real-time vessel-wall (VW) magnetic resonance imaging (VW-MRI) after systemic injection of gadobutrol in patients with neurological pathologies. We observed a conserved three-dimensional anatomy of MLVs in mice and humans that aligned with dural venous sinuses but not with nasal CSF outflow, and we discovered an extended anterior MLV network around the cavernous sinus, with exit routes through the foramina of emissary veins. VW-MRI may provide a diagnostic tool for patients with CSF drainage defects and neurological diseases.


Assuntos
Sistema Glinfático , Vasos Linfáticos , Animais , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/patologia , Humanos , Sistema Linfático , Vasos Linfáticos/diagnóstico por imagem , Imageamento por Ressonância Magnética , Meninges/diagnóstico por imagem , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...